Как найти объём параллелепипеда?

Как найти объём параллелепипеда

Всем доброго дня! Зовут меня Иван, и я папа школьника, который не слишком силен в математике. Недавно сыну задали задание – найти объем параллелепипеда и немного покорпев над ним и так и не сумев решить задачку, он обратился ко мне. Школьных знаний в моей памяти осталось немного, а потому пришлось браться за учебники, перечитывать их и потом объяснять изученный материал сыну. Наверняка мой опыт окажется полезным и для других родителей и потому я и написал эту статью, в которой подробно рассказана информация по решению задач на объем этой геометрической фигуры.

Немного теории

Как найти объём параллелепипедаПрежде чем я расскажу, как собственно найти объем и площадь параллелепипеда, и по какой формуле, давайте вместе вспомним, что же это за такое. У этой геометрической фигуры имеется три равнозначных трактовки:

  1. Параллелепипедом считается многогранник с 6-ью гранями, особенность которых заключается в том, что любая – это параллелограмм.
  2. Под термин попадает и шестигранник с 3-мя парами граней, которые будут параллельны друг дружке.
  3. Параллелепипедом называется и призма, в основе которой будет параллелограмм.

Чаще всего исчислить объем требуется у параллелепипедов нескольких разных видов. Для каждого случая есть своя формула и свое решение и ниже я подробно объясню, как решать типовые задачи по исчислению объемов разных видов этой геометрической фигуры.

Переходим к практике

Как решить задачу на нахождение объема прямоугольного параллелепипеда? Особенностью этого типа фигуры является то, что каждая ее грань – это прямоугольник. Если хотите понять, как выглядит прямоугольный параллелепипед – посмотрите на самую обычную коробку из-под обуви.

Как найти объём параллелепипедаЧтобы решить задачку, сначала ищем значения двух сторон основания фигуры. Стороны имеют перпендикулярное расположение друг к другу и находятся по формуле: П-АхБ, где А – это длина, а Б – это ширина. Далее выясняем еще один ключевой параметр, а именно находим высоту. И затем переходим к вычислению объема, в котором рабочей будет такая формула: V=ПхН, то есть для получения объема нужно площадь основания умножить на высоту. Как найти высоту – тут стоит заглянуть в учебник по геометрии и выписать формулу по нахождению ребра фигуры.

Как найти объём параллелепипедаЧтобы найти объем прямого параллелепипеда прямого, разберемся с тем, как выглядит эта конкретная фигура. Ее боковые грани – прямоугольники, перпендикулярные основанию, а потому объем будет вычисляться идентично задаче выше, но только следует учесть, что высотой будет выступать не ребро фигуры, а отрезок, соединяющий грани противоположные друг другу и перпендикулярный основе. Основание здесь параллелограмм и потому формула будет чуть сложней: П=АхБхsin(а). А, Б – это длина и ширина основания, а «а» – это угол, который они будут образовывать, пересекаясь.

Объём параллелепипеда

Разберемся с объемом наклонного типа фигуры. Грани этого типа фигуры не перпендикулярны ее основанию, а потому расчеты следует начать с нахождения высоты. Высоту умножаем на площадь основания и получаем объем, то есть формула у нас выглядит следующим образом: V=ПхН.

Остается узнать, как исчислить объем фигуры, грани которой квадратные. Такую фигуру чаще называют кубом, но в тоже время она является параллелепипедом, каждая грань которого – квадрат. А потому все ее ребра будут равны между собой. Формула вычисления объема будет максимально простой: нужно измерить ребра и результат исчислений возвести в 3-ю степень.

Вот так находится объем такой интересной геометрической фигуры как параллелепипед. Надеюсь, написанная мною короткая шпаргалка станет хорошим подспорьем для школьников и родителей в решении задач по геометрии и ни одну контрольную ваш ученик не напишет на плохую отметку!

Добавить отзыв

Нажмите сюда, чтобы добавить отзыв

Ваш e-mail не будет опубликован. Обязательные поля помечены *